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Table 2: Timing Results for 6 of 17 experimental studies

Experiment # 1 3 4 5 8 16

NIV 3 3 3 3 2 3

DD time (secs) 4056 2948 4312 5300 24610 5604

DD iters 1000 1000 850 1000 650 850

tDD .0000984 .0001052 .0001231 .0001286 .0001213 .0001212

AD time (secs) 10376 9994 10156 9700 35430 10130

AD iters 575 710 425 425 650 850

tAD .0004377 .0005021 .0005797 .0005536 .0001747 .0002190

relative work ratio
(tAD/tDD)

4.449 4.775 4.710 4.306 1.440 1.807

Table 3: DD and AD timings for geometric sensitivities with Baldwin-Lomax turbulence
model on 97x25x17 grid, NIV ranges from 1 to 48. Flow solver was executed for 50 iterations.

NIV 1 2 4 6 8 12 48

DD time 174 261 435 609 783 1131 4263

AD time 254 360 593 2034 2230 2298 3846

relative work ratio
(tAD/tDD)

1.46 1.38 1.36 3.34 2.85 2.03 .902
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1. ONERA M6,M = .84,α = 3.06°, inviscid
2. ONERA M6,M = .20,α = 0°, Re = 5000
3. ONERA M6,M = .20,α = 1°, Re = 5000

4. ONERA M6,M = .84,α = 3.06°, Re= 11.7x106

5. ONERA M6,M = .84,α = 5.06°, Re= 11.7x106

6. ONERA M6, NACA 00098 Airfoil,M = .84,α = 3.06°, Re = 11.7x106

(As described in Subsection 5.3, each number in the shaded portion of the table is a ratio of the AD–generated derivative value
DAD to the DD–generated derivative value DDD. In experiment 1, the blank entries indicate derivatives that were computed to
be zero by bothDAD andDDD. In experiment 2, each “*” indicates a ratio having a highly suspectDDD value.)

Table 1: Numerical results. (17 Experimental Studies)
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M α Re M α Re M α Re

1 1 I 97x25x17 1.0003 .9999 1.0000 .9999 1.0002 .9999

2 2 L 97x17x17 * 1.0000 * 1.0004 * 1.0000 * 1.0000 *

3 3 L 97x17x17 1.0028 1.0000 1.0000 .9998 1.0001 1.0000 .9985 1.0000 1.0001

4 4 T,ML 97x25x17 1.0000 1.0000 1.0007 1.0000 1.0000 1.0000 .9999 1.0000 1.0012

5 4 T,BL 97x25x17 1.0000 1.0000 .9991 1.0000 1.0000 1.0000 1.0000 1.0000 .9961
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7 4 T,BL 97x25x17 .9980 .9997 .9882 .9950 .9879 .9997

8 4 T,BL 193x49x33 .9999 .9997 1.0000 1.0001 .9998 .9999

9 5 T,BL 193x49x33 .9997 .9996 .9998 1.0027 .9997 .9996

10 4 T,JK 193x49x33 .7874 1.0083 .7750 1.0403 .8037 .7359

11 4 T,JK 193x49x33 .9940 .9694 .9826 .9544 .9935 1.0191

12 5 T,JK 193x49x33 1.0513 .7680 .9512 -.0807 1.0355 .7363
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flow
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13 1 I  97x33x17 1.0000 1.0000 1.0000 1.0074 1.0000 1.0000 1.0000 1.0000 1.0000

14 4 T,BL  97x33x17 .9939 1.0062 .9745 .5938 1.0007 .7690 .9629 .9981 1.0781

15 6 T,BL 97x33x17 1.0091 1.0033 1.0005 .7066 1.0005 .8238 1.0105 .9988 1.0170
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16 4 T,BL 97x33x17 .9996 1.0009 .9996 1.0001 .9991 1.0012

17 6 T,BL 97x33x17 .9998 1.0008 .9997 1.0002 .9995 1.0011

CL CD CM
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CL CD CM
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CD CM



11

Application,” SIAM, Philadelphia, PA, 1991.
18. D. Juedes, “A Taxonomy of Automatic Differentiation

Tools,” In A. Griewank and G.F. Corliss, eds.,Proceed-
ings of the Workshop on Automatic Differentiation of
Algorithms: Theory,   Implementation, and Application,
SIAM, Philadelphia, PA, pp. 315–329, 1991.

19. A. Carle, K.D. Cooper, R.T. Hood, K. Kennedy, L. Torc-
zon and S.K. Warren, “A Practical Environment for Sci-
entific Programming,”IEEE Computer, 20(11), pp. 75–
89, Nov. 1987.

20. D. Callahan, K. Cooper, R.T. Hood, K. Kennedy and
L.M. Torczon, “ParaScope: A Parallel Programming
Environment,”International Journal of Supercomputer
Applications, 2(4), Dec. 1988.

21. T.F. Coleman and J.J. Moré, “Estimation of Sparse Jaco-
bian Matrices and Graph Coloring Problems,”SIAM
Journal on Numerical Analysis, 20:187–209, 1984.

22. T.F. Coleman, B.S. Garbow and J.J. Moré, “Software for
Estimating Sparse Jacobian Matrices,”ACM Transac-
tions on Mathematical Software, 10:329–345, 1984.

23. B. Averick, J. Moré, C. Bischof, A. Carle and A.
Griewank, “Computing Large Sparse Jacobian Matrices
using Automatic Differentiation,” ANL–MCS–P348–
0193, Mathematics and Computer Science Division,
Argonne National Laboratory, 1993. Also to appear in
SIAM Journal of Scientific Computing.

24. V.N. Vatsa and B.W. Wedan, “Development of a Multi-
grid Code for 3–D Navier-Stokes Equations and Its
Applications to a Grid-Refinement Study,”Computers
& Fluids, 18(4), pp. 391–403, 1990.

25. B. Baldwin and H. Lomax, “Thin Layer Approximation
and Algebraic Model for Separated Turbulent Flow,”
AIAA 78–257, 1978.

26. D. Johnson and L. King, “A Mathematically Simple
Turbulence Closure Model for Attached and Separated
Turbulent Boundary Layers,”AIAA Journal, vol. 23, no.
11, pp. 1684–1692, 1985.

27. V.N. Vatsa, M.D. Sanetrik and E.B. Parlette, “Develop-
ment of a Flexible and Efficient Multigrid-Based Multi-
block Flow Solver,” AIAA 93–0677, Jan. 1993.

28. J-Ch. Gilbert, “Automatic Differentiation and Iterative
Processes,”Optimization Methods and Software, Vol. 1,
pp. 13–22, 1992.

29. B.D. Christianson, “Reverse Accumulation and Accu-
rate Rounding Error Estimates for Taylor Series Coeffi-
cients,”Optimization Methods and Software, 1(1):81–
94, 1992.

30. A. Griewank, C. Bischof, G. Corliss, A. Carle and K.
Williamson, “Derivative Convergence for Iterative
Equation Solvers,”Optimization Methods and Software,
Vol. 2, pp. 321–355, 1993.

31. B. Averick, R.G. Carter and J.J. Moré, “The MINPACK-
2 Test Problem Collection (Preliminary Version).” Tech-

nical Report ANL/MCS–TM–150, Mathematics and
Computer Science   Division, Argonne National Labora-
tory, 1991.



10

8. Acknowledgments

We would like to thank John Dennis and Ken Kennedy of
Rice University, and Jorge Moré of Argonne National Labo-
ratory for supporting the implementation of ADIFOR;
George Corliss and Andreas Griewank for their seminal roles
in the development of ADIFOR; Veer Vatsa of CAB/FldMD
at NASA Langley for numerous useful and informative dis-
cussions concerning the TLNS3D and TLNS3D-MB codes;
and Kitty Haigler of CSB/FldMD at NASA Langley for her
continued support of the AD effort. We further thank several
people of AAOB/SDyD including Dr. J.-F. Barthelemy,
Laura Hall, and Eric Unger (now with McDonnell Douglas)
for their pioneering efforts with AD at NASA Langley.

The work of C. Bischof was supported by the Office of Sci-
entific Computing, U.S. Department of Energy, under Con-
tract W-31-109-Eng-38, by the National Aerospace Agency
under Purchase Order L25935D.

The work of A. Carle was supported by the National Aero-
space Agency under Cooperative Agreement No. NCCW-
0027, and by the National Science Foundation under cooper-
ative agreement CCR-9120008.

9. References

1. J.S-. Sobieski, “Multidisciplinary Optimization for
Engineering Systems: Achievements and Potential,”
NASA TM 101566, NASA, Mar. 1989.

2. S. Dollyhigh, J.S-. Sobieski, “Recent Experience with
Multidisciplinary Analysis and Optimization in
Advanced Aircraft Design,” InThird Air Force/NASA
Symposium on Recent Advances in Multidisciplinary
Analysis and Optimization. A Collection of Technical
Papers, San Francisco, CA, pp. 404–411. Sept. 1990.

3. P.G. Coen, “Recent Results from the High-speed Air-
frame Integration Research Project,” AIAA Paper 92–
4717, Sept. 1992.

4. P.G. Coen, J.S-. Sobieski and S. Dollyhigh, “Prelimi-
nary Results From the High-Speed Airframe Integrated
Research Project,” AIAA 92–1004, Feb. 1992.

5. J. Sobieszczanski-Sobieski, J.-F. Barthelemy and K.M.
Riley, “Sensitivity of Optimum Solutions to Problem
Parameters,”AIAA Journal, Vol. 20, No. 9, pp. 1291–
1299, Sep. 1982.

6. J.-F. Barthelemy, J. Sobieszczanski-Sobieski, “Opti-
mum Sensitivity Derivatives of Objective Functions in
Nonlinear Programming,”AIAA Journal, Vol. 21, No. 6,
pp. 913–915, June 1983.

7. L. Green, C. Bischof, A. Carle, A. Griewank, K. Haigler

and P. Newman, “Automatic Differentiation of
Advanced CFD Codes With Respect to Wing Geometry
Parameters for MDO,”Abstracts from Second U.S.
National Congress on Computation Mechanics, Wash-
ington, D.C., p. 136, August 16–18, 1993.

8. C. Bischof, G. Corliss, L. Green, A. Griewank, K.
Haigler and P. Newman, “Automatic Differentiation of
Advanced CFD Codes for Multidisciplinary Design,”
Computing Systems in Engineering 3(6), 1993. Also
presented at the Symposium on High-Performance
Computing for Flight Vehicles, Arlington, VA, Dec. 7–
9, 1992.

9. L. Green, P. Newman and K. Haigler, “Sensitivity
Derivatives for Advanced CFD Algorithm and Viscous
Modeling Parameters via Automatic Differentiation,”
AIAA 93–3321, 1993.

10. V.M. Korivi, A.C. Taylor III, P.A. Newman, G.J.-W.
Hou and H.E. Jones, “An Approximately-Factored
Incremental Strategy for Calculating Consistent Dis-
crete Aerodynamic Sensitivity Derivatives,” InFourth
AIAA/USAF/NASA/OAI Symposium on Multidisci-
plinary Analysis and Optimization,Cleveland, OH,
AIAA 92–4746–CP, pp. 465–478, Sept. 1992.

11. P.A. Newman, G.J.-W. Hou, H.E. Jones, A.C. Taylor III-
and V.M. Korivi, “Observations on Computational
Methodologies For Use In Large-Scale Gradient-Based
Multidisciplinary Design,” InFourth AIAA/USAF/
NASA/OAI Symposium on Multidisciplinary Analysis
and Optimization,Cleveland, OH, AIAA 92–4753–CP,
pp. 531–542, Sept. 1992.

12. L.B. Rall, “Automatic Differentiation: Techniques and
Applications,”Volume 120 of Lecture Notes in Com-
puter Science, Springer Verlag, Berlin, Germany, 1981.

13. C.H. Bischof, A. Carle, G.F. Corliss, A. Griewank and P.
Hovland, “ADIFOR: Generating Derivative Codes from
Fortran Programs,”Scientific Programming, 1(1), pp. 1–
29, 1992.

14. C.H. Bischof, A. Carle, G.F. Corliss and A. Griewank,
“ADIFOR: Automatic Differentiation in a Source
Translator Environment,” In P. Wang, ed.,International
Symposium on Symbolic and Algebraic Computing 92,
ACM, Washington, D.C., pp. 294–302, 1992.

15. C.H. Bischof and A. Griewank, “ADIFOR: A Fortran
System for Portable Automatic Differentiation,” in
Fourth AIAA/USAF/NASA/OAI Symposium on Multidis-
ciplinary Optimization, Cleveland, Ohio, AIAA 92–
4744–CP, pp. 433–441, Sept. 1992.

16. A. Griewank, “On Automatic Differentiation,” In M. Iri
and K. Tanabe, eds.,Mathematical Programming:
Recent Developments and Applications, Kluwer Aca-
demic Publishers, Boston, MA, pp. 83–108, 1989.

17. A. Griewank and G.F. Corliss, eds., “Automatic Differ-
entiation of Algorithms: Theory, Implementation, and



9

with respect to non-geometric inputs, geometric inputs, and
algorithmic and physics modeling parameters. Our experi-
ments demonstrate that the AD method has several distinct
advantages in comparison to DD:

• AD requires a short, initial, code-development lead time
to obtain SD codes capable of providing accurate SD.
Our initial application of ADIFOR to TLNS3D required
O(man-month) time. Subsequent efforts requiredO(man-
week) or less.

• Accurate SD can be computed without the need to deter-
mine a step-size for the DD perturbation capable of pro-
viding an accurate derivative approximation. This is
especially important in cases, such as the experiment to
compute geometric sensitivities with respect to planform
derivatives, in which DD failed to produce accurate
approximations to the SD's despite several attempts with
different perturbation sizes.

• Accurate SD can be computed for code that has been
deemed to be too complicated to be differentiated by
hand. For example, in the 2–D quasi–analytical SD code
of reference 10, the turbulence model was deemed too
complicated for differentiation by hand; its treatment as
constant led to sizable relative errors in some resulting
global sensitivities. ADIFOR, however, successfully dif-
ferentiated the TLNS3D Baldwin-Lomax turbulence
model providing answers consistent with those produced
by DD.

• Small derivative values can easily be calculated. DD
accuracy for small derivatives is often suspect.

• “Consistent” derivatives of oscillatory output functions
can be obtained. For cases for which the convergence
was poor due to a noisy output, the DD based upon
instantaneous output values failed to adequately approxi-
mate the SD. The AD code appeared to capture several
meaningful digits of each SD computed for the turbulent
case using the noisy Johnson–King turbulence model.

• Convergence of the SD via AD can be monitored during
code execution, whereas SD via DD are usually con-
structed after the runs are complete, and this precludes
convergence monitoring during execution.

Unfortunately, at this stage, the time required for an AD-aug-
mented code to compute derivatives is still larger than we
would like it to be for codes as complex as TLNS3D. As re-
ported above, for a sufficiently large number of design vari-
ables, AD outperforms DD; however, the memory required
for large numbers of design variables, is prohibitive. AD fares
far better if all of the costs actually incurred by using DD are
considered:

• Time and space required to manage the data from multi-
ple perturbed function evaluations.

• Time required to verify that the DD step-size is providing
accurate SD approximations.

• Time required to compute DD by central differences, if
one-sided divided differences are not able to provide
accurate SD approximations.

It should be stressed that, from a purely mathematical point
of view, the differentiation of iterative processes does not
seem to be a problem, despite the fact that the assumptions of
known derivative convergence theorems have not been veri-
fied and are almost certainly not satisfied by multigrid algo-
rithms. Since even the convergence of the iterates themselves
has not been proven under reasonably general assumptions,
attempts to prove the convergence of their derivatives seem
premature. As our theoretical studies and numerical experi-
ments indicate, one may expect that both solutions and deriv-
atives converge at about the same rate once the iteration has
settled down.

7. Future Work

We are considering several approaches to reduce the cost of
AD for iterative flow solvers.

First, we are investigating the “by-hand” application of AD in
the context of an incremental iterative strategy. This approach
should have two beneficial effects. Since less code will be
processed by AD, the space required will be significantly re-
duced. This reduction in space, in turn, means that the number
of design variables can be increased, leading to a significant
improvement in vector efficiency and consequent reduction
in computational effort.

Second, we are investigating automatic “deactivation” con-
cepts in which an attempt will be made to avoid the unneces-
sary differentiation of preconditioners and other
intermediates that affect only the solution process but not the
solution function and its derivatives. Unless the original code
is appropriately structured, “deactivating” such intermediates
will be a difficult task. However, the resulting simplified de-
rivative calculation should be very efficient.

Third, we are investigating techniques to improve the vector-
ization and parallelization of the derivative code, so that their
running time is at worst equal to that of the original code mul-
tiplied by the number of design parameters.
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points. Similarly, define  to be the time required to com-
pute sensitivities by AD takingI multigrid iterations over a
grid with G grid points. Then, define  and  as fol-
lows.

(5)

and

. (6)

The ratio of  to , referred to as the “relative work
ratio,” indicates the relative amount of work performed by an
iteration of the AD code at a grid point to that performed by
an iteration of the DD code at a grid point.

Table 2 presents timing results from five of the experimental
sensitivity studies. Again, each experiment is identified by
experiment number. The inefficiency of the AD code, even
with loop unrolling by the Cray compiler, is captured by the
relative work ratios of 4.449, 4.775, 4.710 and 4.306 for non–
geometric sensitivity experiments 1, 3, 4 and 5.

The Cray compiler Flowtrace and Loopmark options were
used to identify subroutines, function calls, and “do loops”
that did not vectorize as well as the corresponding ones in the
original code and, thus, probably consumed far too much ex-
ecution time in the AD code. After this evaluation, it was pos-
sible to use simple code modifications (changing one
recurrent subroutine argument to a parameter, restoring in-
trinsic Cray vector functions which ADIFOR could not pro-
cess) and more compiler options (use of the aggressive
compile option, and inlining of the Fortran intrinsic and error
handling functions provided by ADIFOR) to improve the de-
rivative code vectorization. After this processing, some deg-
radation of the vector inefficiency still exists, most likely
caused by the inability of the Cray compiler to vectorize the
more complex loops generated by ADIFOR. Manual loop
segmentation, known as loop distribution in the compiler
community, allows the compiler to vectorize more of the re-
maining loops. Additional segmentation may recover even
more of the vector performance. Both the turbulence model-
ing parameter sensitivity studies and geometric sensitivity
studies were executed with this “hand–tuned” code. The im-
proved efficiency of this AD code is demonstrated by the rel-
ative work ratio of 1.440 for the viscous modeling parameter
sensitivity of experiment 8 and the relative work load of
1.807 for the geometric sensitivity of experiment 16.

TAD

tDD
tAD

tDD

TDD

G I×( )
-------------------=

tAD

TAD

G I×( )
-------------------=

tAD tDD

Experience gained through manually postprocessing the
TLNS3D code will be incorporated into future versions of
ADIFOR, thereby improving vector efficiency and decreas-
ing user intervention.

To document the impact of number of independent variables
on the efficiency of TLNS3DAD, a series of experiments were
run with number of independent variables ranging from 1 to
48 as shown in Table 3. It is significant to note how the time
per design variable increases sharply in going from 4 to 6 de-
sign variables, and then slowly decreases as the number of de-
sign variables increases beyond six. This is due to the Cray
compiler which will only automatically unroll the innermost
loops up to length 5. However, as the time per design variable
indicates, extremely good vectorization was achieved with
the 48 design variable case.

Memory requirements for the AD codes created in the exper-
imental studies, in general, required between NIV and NIV+1
times as much memory as that required for the original
TLNS3D code. One would expect that the memory would in-
crease by a factor of about NIV+1 over the original code in
order to accommodate calculation and storage of the function
plus the NIV derivatives by an iterative scheme. ADIFOR de-
pendence analysis reduces the memory requirements some-
what by augmenting only the “relevant” portion of the
function code.

5.5 Ease–Of–Use

The experimental sensitivity studies demonstrated that reli-
able (and verified) SD could be obtained for complex CFD
codes inO(man–week), an enormous improvement over the
time required to construct a “by-hand” derivative code. After
an initial successful application of ADIFOR to a code such as
TLNS3D, subsequent applications to compute new sets of
sensitivities should take onlyO(man–hours) which is quite
competitive with divided differences, but is free of the uncer-
tainty inherent in the use of divided differences.

As an indication of the ease–of–use of ADIFOR and the un-
reliability of DD, the majority of time dedicated to perform-
ing each of these experiments was spent verifying the
ADIFOR–generated derivatives by DD — not applying ADI-
FOR to generate the AD code.

6. Conclusions

Automatic differentiation of TLNS3D, an efficient, complex,
state of the art 3-D CFD code, has been quantitatively dem-
onstrated to provide accurate SD of output flow properties
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ratio of the AD–generated derivative value DAD to the DD–
generated derivative value DDD. A ratio near unity indicates
good agreement between the AD and DD derivatives. Note
that in almost all cases AD and DD were in agreement to be-
tween 3 and 4 significant digits of accuracy.

Experiments 1 through 14 were run using a restart-based ap-
proach in which the original TLNS3D code was run to rea-
sonably good convergence and then a restart solution file was
generated. Then, the SD augmented TLNS3D code was run
from the restart file to converge the SD. Experiments 15
through 17 were run from a scratch start. For more informa-
tion on these two approaches, again refer to references 7, 8
and 9.

In experiment 1, the blank entries indicate derivatives that
were computed to be zero by bothDAD andDDD. In experi-
ment 2, each “*” indicates a ratio having a highly suspect
DDD value computed by taking function differences of mag-
nitudeO(10-14). The sensitivities computed by AD have
magnitudeO(10-8) and we believe them to be correct.

Experiments 10, 11 and 12 highlight the differences between
the asymptotic convergence behavior of the Baldwin–Lomax
and Johnson–King turbulence models. At the low angle–of–
attack (α = 3.06°) condition of experiments 10 and 11, the
Johnson–King residual converges several orders of magni-
tude and then “hangs up” in an oscillatory low amplitude
noise; the Baldwin–Lomax residual can be driven to machine
zero without difficulty. At the high angle–of–attack (α =
5.06°) condition of experiment 12, the amplitude of the noise
is increased. Noise also appears in the computations for the
dependent variablesCL, CD andCM. DD based on such a
noisy function cannot be expected to give meaningful SD as
indicated by the poor agreement of four of the six sensitivity
ratios computed in experiment 10. However, the AD's are ex-
pected to give meaningful results because the SD calculations
via AD are driven by the most significant digits of the func-
tion evaluation, whereas the DD are constructed by subtrac-
tion, where the most significant digits of the function
evaluation are lost. In experiment 11, an attempt was made to
factor out the oscillatory noise by “time–averaging” the de-
pendent variables used in the DD calculation. Underlined val-
ues in Table 1 indicate ratios calculated usingDDD values
computed using time–averaged function values computed by
a sequence of function iterations. Time–averaging signifi-
cantly improved the agreement between AD and DD in this
case. Unfortunately, time–averaging had little affect on the
agreement between AD and DD in experiment 12.

Experiments 14 and 15 demonstrate a case where DD may be
difficult to use to obtain accurate SD approximations due to
the use of a highly stretched grid. The DD used in these ratios

were one-sided forward differences, but recent calculations
using one-sided backward, and central differences show little
improvement over these results. We believe the sensitivities
of the wing drag coefficientCD to the tip leading edge span-
wise location ztip,LE computed by AD to be correct.

The numerical results reported here show that even the naive
application of ADIFOR to multigrid solvers viewed essen-
tially as black–box programs can produce accurate sensitivity
information at tolerable costs. In fact, for the majority of the
sensitivity studies, all calculated derivatives could be repro-
duced with several digits agreement by carefully evaluated
DD.

5.4 Running Time and Storage Requirements

To generate a code that computes sensitivities with respect to
a set of independent variables of size NIV, ADIFOR inserts
vector loops of length NIV to compute “gradient objects” for
each intermediate involved in the function evaluation, using
roughly NIV times as much memory as the original code. If
NIV is sufficiently large, then the resulting AD code will be
an efficient vector code. For standard test problems, ADIFOR
achieves and undercuts this bound regularly on scalar and su-
per–scalar chips.31 Unfortunately, the large memory require-
ments of TLNS3D and the factor of NIV expansion in
memory required for the forward mode of AD, practically
limits the number of independent variables that can be com-
puted by TLNS3DAD to about 10 for reasonably fine grids.
Therefore, all of the vector loops inserted by ADIFOR are
“short loops.” With current Cray compiler technology, these
inner–most short loops prevent the longer TLNS3D outer
loops from being pipelined leading to an inordinately long
running time. For up to 5 independent variables, significant
improvements can be made to the AD code by making minor
code changes “by–hand” and by directing the Cray compiler
to unroll the short vector loops. Unfortunately, these changes
are insufficient to create an efficient vector version of
TLNS3DAD.

Since the multigrid solver and its derivatives appear to con-
verge at roughly the same asymptotic rate for smoothly con-
verging functions, the cost of AD versus DD can be assessed
by comparing the cost of a “single iteration” of the AD code
and the DD code normalized based on grid size. The concept
of “single iteration” of the AD code is well defined. For the
DD code, the cost of a “single iteration” is the sum of the
costs of each iteration of the NIV+1 perturbed function eval-
uations required to compute the one-sided DD approxima-
tions.

Define  to be the time required to compute sensitivities
by DD takingI multigrid iterations over a grid with G grid

TDD
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investigated derivatives with respect to free stream Mach
numberM, angle of attackα, and stream Reynold’s number
based on mean aerodynamic chordRe. Derivatives were ver-
ified for inviscid transonic flow, laminar subsonic flow and
turbulent transonic flow. Both the differentiable mixing–
length turbulence model and the Baldwin–Lomax turbulent
models were compared for the transonic flow case.

The algorithmic parameter sensitivity study investigated the
second– and fourth–order damping coefficients (VIS2 and
VIS4) of the CFD solution algorithm of the TLNS3D code
which uses a blending of scalar second– and fourth–differ-
ence artificial dissipation to maintain numerical stability. De-
rivatives were verified for transonic turbulent flow.

The physics modeling parameter sensitivity study investigat-
ed two turbulence parameters: the Clauser constant K of the
outer–region eddy viscosity coefficient and A+ of the Van
Driest correction to the Prandtl mixing length of the inner–re-
gion viscosity coefficient. Derivatives were verified for tran-
sonic turbulent flow. The Baldwin–Lomax turbulence model
was examined on both the 97x25x17 and 193x49x33 grids.
The Johnson–King turbulence model was only investigated
on the 193x49x33 grid due to the excessive noise encountered
while trying to converge the residual on the coarser grid.

The application of ADIFOR for geometric inputs investigat-
ed derivatives with respect to planform and section parame-
ters. The planform parameters are the tip chord, the tip
leading edge streamwise location, and the tip leading edge
spanwise location (ctip, xtip, LE, and ztip, LE). The section pa-
rameters are the twist angle, maximum camber, location of
maximum camber, and the thickness-to-chord ratio at the
wing root and tip (αroot, cmaxroot, xcmaxroot, τroot, αtip,
cmaxtip, xcmaxtip, τtip). Derivatives with respect to planform
were computed for both the original ONERA M6 wing and an
ONERA M6 planform with a NACA 00098 wing section
(that is, a symmetric “four–digit” airfoil of thickness–to–
chord ratio 0.098) that approximates the original ONERA M6
wing section. Both inviscid and turbulent transonic flows
were studied.

All ADIFOR preprocessing of codes for these experiments
was performed on a SPARC workstation. All TLNS3D re-
sults were obtained on one processor of the NASA Langley
Research Center Cray Y–MP.

5.2 ADIFOR Code Processing

In preparation for the non–geometric sensitivity studies,
ADIFOR was applied to TLNS3D in a very simple and
straightforward manner, with the non–geometric inputs iden-
tified as the independent variables, to construct the sensitivity

code TLNS3DAD. Prior to processing with ADIFOR, minor
changes to the TLNS3D code required for ADIFOR were per-
formed. ADIFOR differentiated through the entire multigrid
solution algorithm; the specified dependences were traced
from independent to dependent variables and the SD code in-
serted as required. The resulting SD modules were assembled
into a working code based on the template shown in Figure 3.
The SD code was later modified to improve its performance
on the Cray Y–MP as described later in this section.

For the algorithmic and physics modeling parameter sensitiv-
ity studies, ADIFOR was again applied to TLNS3D, with the
algorithmic and physics modeling parameters identified as
independent variables, to construct the sensitivity code
TLNS3DAD.

In preparation for ADIFOR processing for the geometric sen-
sitivity study, ADIFOR was applied to WTCO to generate the
new code WTCOAD with the geometric parameters specified
as the independent variables, and the grid coordinates (x, y, z)
generated by WTCO specified as the dependent variables. In
addition to generating a grid, WTCOAD also generates the de-
rivatives or grid sensitivities to the geometric parameters (ei-
ther planform or section). ADIFOR is then applied to
TLNS3D, to create TLNS3DAD, with the grid coordinates de-
clared as the independent variables and the flow coefficients
as the dependent ones. Both grid and grid sensitivities are
read as input by TLNS3DAD. The grid sensitivities initialize
the seed matrix within TLNS3DAD so that an application of
the chain rule can be used to calculate the required SD's as

(4)

where G is a generic geometric variable and X is the grid gen-
erated by WTCOAD and used as the input to TLNS3DAD. The
grid sensitivity array  is the seed matrix input to
TLNS3DAD.

5.3 Accuracy

Table 1 presents a summary of seventeen experiments inves-
tigating the ADIFOR–generated codes WTCOAD and
TLNS3DAD. Each experiment has been assigned a number
given in the “exp #” column. The flow case column identifies
the configuration and flow condition as indicated in the leg-
end under the table. Flow type labels I, L, TML, TBL and TJK
indicate inviscid transonic flow, laminar subsonic flow, and
turbulent transonic flow modeled with a mixing–length mod-
el, Baldwin–Lomax model, or Johnson–King model, respec-
tively. Each number in the shaded portion of the table is a
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For the sake of discussion, assume that our iteration for solv-
ing Equation 1 and throughout has the schematic form shown
in Figure 2.

Let the notationRz andRx represent  and , respectively.
Newton's method, for example, is a particular instance of this
scheme with  defined as follows.

(3)

In the following, a “prime” notation (such as ) always de-
notes total differentiation with respect tox. Applying AD to
the schematic iteration shown above, and modifying the stop-
ping criterion, provides the derivative iteration shown in
Figure 3.

Given  and , one can obtain the derivative residual
at a cost roughly equal to that of evaluating  multiplied

by the number of design parameters (i.e., components in x).
In particular, this derivative evaluation does not require the
calculation of the Jacobian , which may contain very many
elements. The stopping criterion based solely on  has
been replaced by one that also requires  to be small.
While it is natural to do so, an automatic tool cannot be ex-
pected to detect the stopping criterion in a potentially compli-

for m = 1, ... do

evaluate  and stop if it is small

compute a suitable preconditioner

update

endfor

FIGURE 2. Original iteration

for m = 1, ... do

if  and  are small enough stop

compute  and its derivative

endfor

FIGURE 3. SD augmented iteration
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cated code without some user intervention. Conceptually, one
may remove the stopping criterion completely to obtain infi-
nite sequences of iterates  and derivative approximations

, which have been shown to converge R–linearly.30This
result was originally obtained by Gilbert28 and
Christianson29 for the case of Newton's method and similar
smooth fixed point iterations.

These results have been extended to quasi–Newton methods,
where the derivatives may grow unbounded but
still tends to zero, because of the superlinear rate of conver-
gence.30 Whenever the iterates themselves converge super-
linearly there is the danger that the R–linearly convergent
derivative approximations may lag behind. For such meth-
ods, it is particularly important that the stopping criterion en-
force a significant reduction of . In large–scale
applications, a reasonable linear rate is often the best one can
achieve, so that the asymptotic rate of convergence is likely
to be the same.

5. Experimental Studies

In order to evaluate the promised abilities of AD and ADI-
FOR to deliver SD of complex numerical processes accurate-
ly and efficiently, a sequence of experiments was performed
in which ADIFOR was applied to the WTCO wing grid gen-
eration code and TLNS3D to compute the sets of derivatives
described above. Highlights from those experiments will now
be presented. For more complete information on the results of
these studies, refer to references 7, 8 and 9. For example, in
this overview, almost all of the investigations into the ques-
tion of what actually defines “good convergence for the flow
solver” and “good convergence for the ADIFOR–generated
codes” are ignored.

The primary concerns about the use of AD in computing SD
were accuracy, running time requirements and memory re-
quirements of the derivative code generated by ADIFOR.
Ease–of–use was a secondary concern. Accuracy and running
time were assessed by comparing the results of the ADIFOR–
generated code with DD.

5.1 The Experiments

Each of the experimental studies investigated derivatives giv-
en an ONERA M6 wing described by a C–O mesh. The lift
coefficientCL, drag coefficientCD and wing pitching mo-
mentCM were taken as the output of TLNS3D with respect to
differentiation.

The application of ADIFOR for non–geometric sensitivities

zm
z'm

P'm P'mRm

R'm
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properties such as improved convergence rate or improved
accuracy.

In the studies described below, the WTCO wing grid genera-
tion code has been coupled with the TLNS3D thin–layer
Navier–Stokes code.

The WTCO wing grid generation is a batch–mode, algebraic,
transfinite interpolation grid generation program. The code
includes the capability to generate grids around wings of at
least two airfoil sections, described by pairs of coordinates or
NACA four–digit airfoils. In this case, the usual NACA four–
digit airfoil family has been expanded by allowing the maxi-
mum camber (cmax), location of maximum camber (xcmax),
and the thickness–to–chord ratio (τ) to be specified as real
number inputs, rather than deduced from an integer designa-
tion. A true NACA 2412 has the cmax = 0.02, xcmax = 0.4,
andτ = 0.12; the WTCO program has been modified to allow
for small perturbations to this shape, such as cmax =0.02002,
xcmax = 0.4004, andτ = 0.12012. These modifications were
necessary to perform the DD runs used to verify the SD cal-
culations by AD. The user specifies spacing constants at sev-
eral points on the grid boundaries as well as the type of
boundary. The user also specifies the type of boundary sur-
face, interior interpolation, and the amount of smoothing re-
quired. WTCO was chosen for use in this study because it has
performed reliably with the flow solver on many previous oc-
casions; it is non–iterative and does not include any coding
extraneous to the grid generation (such as graphics). The
source code necessary for AD application was readily avail-
able. The total number of design variables can be changed by
changing the number of input sections which describe the
wing.

The TLNS3D code is a high–fidelity aerodynamic computer
program that solves the time–dependent 3–D thin–layer
Navier–Stokes equations with a finite–volume formulation.24

The code employs grid sequencing, multigrid, and local time
stepping to accelerate convergence and efficiently obtain
steady–state high Reynolds number turbulent flow solutions.
When temporally converged to a steady–state solution, the
method is globally second–order accurate. The TLNS3D
code is a central–difference code that employs second–order
central differences for all spatial derivatives and employs a
blending of scalar second– and fourth–difference artificial
dissipation to maintain numerical stability. The solution is
advanced explicitly in time with a five–stage Runge–Kutta
time–marching algorithm. The code includes both the Bald-
win–Lomax (B–L) and Johnson–King (J–K) turbulence mod-
el.25,26 This code has been used successfully in a number of
applications across the flight speed range from low subsonic
to hypersonic and for a number of flight vehicle types. The
TLNS3D code is a highly vectorized code and this aspect

contributes greatly to its overall computational efficiency on
the Cray Y–MP. The newly released multiblock version of
TLNS3D, TLNS3D-MB27, promises the flexibility needed
for modeling complex geometric configurations and is basi-
cally organized in incremental iterative form, which may al-
low for significant improvements in the ADIFOR
applications in the future.

4. Differentiation of Iterative Functions

Despite the lack of convergence theory under realistic as-
sumptions, iterative techniques are now the state of the art in
3–D CFD codes for nontrivial geometries and stream condi-
tions.24 The iterative flow solvers may take hundreds of steps
and often involve discontinuous adjustments of solution op-
erators, grids, shock waves, or free boundaries. This iterative
nature of advanced CFD codes poses the most significant
challenge regarding the automatic generation of sensitivities.

If applied to a CFD code as a “black-box,” ADIFOR would
simply differentiate the whole iterative process. Unfortunate-
ly, the resulting sensitivity code would only apply the stop-
ping criterion from the original iterative process which has
been shown to be insufficient to guarantee convergence of the
sensitivities themselves. If the stopping criterion of the sensi-
tivity code is modified to monitor convergence of the sensi-
tivities as well, then the sensitivities computed by AD should
be accurate.28,29Theoretical results on the rate of conver-
gence of derivatives for iterative processes have not yet been
extended to multigrid methods, such as that underlying
TLNS3D, but our experience so far indicates that for smooth-
ly converging functions, the derivatives and the function con-
verge at roughly the same asymptotic rate.9

Consider a function ofx*  defined implicitly by the following
nonlinear system.

(1)

The goal of an iterative solver is to find the value
 of the function implicitly defined byR. The

question is under what circumstances does an AD version of
the code for this rootfinding process compute the following
desired derivatives.

(2)

R z x*,( ) 0=

z* z x*( )=

z'*
dz
dx
------

x x*=
=
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implementation is usually substantial.

In contrast to the approximation of derivatives by DD, AD
does not incur any truncation error so that the resulting deriv-
ative values are usually obtained with the working accuracy
of the original function evaluation. In contrast to fully sym-
bolic differentiation, both operations count and storage re-
quirements can be bounded a priori in terms of the
complexity of the original function code for all modes of AD.
In many cases, the calculations initiated by an AD tool for the
evaluation of derivatives mirror those of a carefully handwrit-
ten derivative code. For more information, refer to the com-
prehensive collection on AD theory, implementation, and
applications17, and a review of the earlier AD tools18.

ADIFOR uses sophisticated program analysis techniques to
extract control flow and dependence information directly
from the user’s source code to determine which intermediate
variables within a program require the propagation of deriva-
tive information.19,20This approach allows for a simple, in-
tuitive interface and may greatly reduce the space and time
requirements of the derivative code by eliminating the need
to compute derivatives for all intermediate quantities in the
program. Application of ADIFOR to Fortran codes requires
specifying the independent and dependent variables to be
used in forming the SD.

The ADIFOR tool produces portable Fortran 77 code and ac-
cepts almost all of Fortran 77, in particular, arbitrary calling
sequences, nested subroutines, common blocks, and equiva-
lences. The ADIFOR–generated code employs a consistent
subroutine naming scheme that allows for code tuning, the
use of domain–specific knowledge, and the exploitation of
vendor–supplied libraries. ADIFOR–generated code can be
used in various ways. Instead of simply producing code to
compute the JacobianJ, ADIFOR produces code to compute
J * S, where the “seed matrix”S is initialized by the user.
Therefore, ifS is the identity, ADIFOR computes the full Ja-
cobian; whereas ifS is just a vector, ADIFOR computes the
product of the Jacobian by a vector. “Compressed” versions
of sparse Jacobians can be computed by exploiting the same
graph coloring techniques that are used for DD approxima-
tions of sparse Jacobians.21,22 The running time and storage
requirements of the ADIFOR–generated code are roughly
proportional to the number of columns ofS, so the computa-
tion of Jacobian–vector products and compressed Jacobians
requires much less time and storage than does the generation
of the full Jacobian matrix.23

Although AD techniques can be applied to augment codes in
their entirety, significant reduction in the space and time re-
quired to compute sensitivities are often possible if domain–
specific application knowledge is coupled with AD tech-

niques in sophisticated ways. For instance, we expect that the
derivative code created by applying AD to the components of
a CFD code for use in an incremental iterative strategy will
significantly outperform the code generated by fully differen-
tiating the CFD iterative solver.

3. SD Requirements for CFD

The computational process of CFD, when coupled with a grid
generator, maps geometric shape inputs, non–geometric
stream inputs and a collection of algorithmic and physical
modeling parameters to a flow solution as shown in Figure 1.

Geometric inputs include wing planform and wing section
parameters. Non–geometric inputs include the free stream
Mach numberM, stream Reynold’s number based on mean
aerodynamic chordRe, and angle of attackα. Algorithmic
and physical modeling parameters include the coefficients of
the artificial dissipation terms and parameters used in turbu-
lence modeling which control stability and convergence ac-
celeration. The flow solution includesCL, the wing lift
coefficient,CD, the wing drag coefficient, andCM, the wing
pitching moment. Interesting SD for the complete grid gener-
ation and CFD process include derivatives of any of the out-
puts (CL, CD or CM) with respect to any of the geometric or
non–geometric inputs or any of the algorithmic and modeling
parameters. Geometric and non–geometric sensitivities might
be used to guide an MDO system, for example, in determin-
ing an optimum wing shape. Sensitivities with respect to al-
gorithmic and modeling parameters could be used in a formal
parameter identification regime to achieve particular program

FIGURE 1. Block diagram of the CFD process
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Numerous research efforts have examined the issue of effi-
cient computation of SD for CFD, but most have concentrat-
ed on the use of direct solvers to solve the large systems of
linear algebraic sensitivity equations generated by direct dif-
ferentiation of the system of discrete nonlinear algebraic
equations which model the Euler or thin–layer Navier–Stokes
(TLNS) equations for 2–D flow. Unfortunately, the extreme-
ly large computer storage requirement of direct solvers make
their extension to 3–D implausible. Advanced 3–D CFD
codes, therefore, typically employ iterative solution algo-
rithms to solve the implicit nonlinear partial differential equa-
tions that express the fluid conservation laws; it is exactly
those iterative techniques that must be augmented with SD
computations.

Typical techniques for “augmenting” a code to compute sen-
sitivities include “by hand,” “by use of a symbolic expression
differentiator” and “by approximation via divided differenc-
es.” Unfortunately, none of these techniques can be counted
on to deliver fast and reliable derivatives in a flexible and
timely fashion for large computer codes. Hand coding of de-
rivatives is impractical and symbolic approaches may require
as much effort as hand coding. Divided differences (DD) may
not be accurate and are obtained too slowly. Since DD errors
tend to grow with problem complexity, larger models will
have to deal with ever–more–inaccurate derivatives, even
though a faithful modeling of their complex nonlinear behav-
ior requires very accurate derivatives. In addition, the cost of
DD will restrain the magnitude of problems that can be done
in practice.

Automatic differentiation (AD) promises to address the need
for a flexible and scalable technology capable of computing
derivatives of large codes accurately, irrespective of the com-
plexity of the model. This paper presents an overview of a se-
quence of three efforts designed to determine the potential of
AD with respect to the SD requirements of MDO for ad-
vanced CFD codes.7–9 In each of these efforts, the ADIFOR
automatic differentiation tool was applied to TLNS3D, a state
of the art, 3–D, thin–layer Navier–Stokes, multigrid flow
solver. In each of these efforts AD was applied to compute
sensitivities of the entire iterative multigrid process. In con-
trast to this “black–box” approach, automatic differentiation
could be applied to components of a CFD solver to obtain de-
rivative computations in an incremental iterative form analo-
gous to quasi-analytical hand differentiated code. The
incremental iterative form, also known as the “delta” or “cor-
rection” form, is commonly used in CFD for obtaining the so-
lution state vector from the nonlinear governing flow
equations. References 10 and 11 discuss the benefits of using
this form to solve the large systems of linear equations need-
ed to obtain SD. Ongoing efforts are evaluating these alterna-
tive strategies.

This paper is organized as follows. Section 2 briefly over-
views automatic differentiation and ADIFOR. Section 3 de-
scribes TLNS3D and examines sets of SD that might be
needed in an MDO context. Section 4 discusses the applica-
tion of AD to iterative CFD solvers. Section 5 presents results
from the experimental studies in which ADIFOR was applied
to compute sets of SD like those described in Section 3.
Section 6 and Section 7 conclude the paper and present ideas
for future work. As will be seen, the results of these efforts are
both significant and encouraging; but challenges remain.

2. Automatic Differentiation and ADIFOR

Automatic differentiation12 is a chain–rule–based technique
for evaluating the derivatives of functions defined by com-
puter programs with respect to their input variables and has
been investigated since 1960. For the most part, implementa-
tions of AD were conceived by the need for accurate first–
and higher–order derivatives in a certain application. Distri-
bution for the mainstream of scientific computing was not a
major concern. Recently, progress towards a general–purpose
AD tool has been made with the development of ADIFOR by
a joint effort of Argonne National Laboratory and Rice Uni-
versity.13–15ADIFOR differentiates programs written in For-
tran 77; that is, given a Fortran procedure (or collection of
procedures) that describe a “function” and an indication of
which variables in parameter lists or common blocks corre-
spond to “independent” and “dependent” variables with re-
spect to differentiation, ADIFOR produces Fortran 77 code
that computes the derivatives of the dependent variables with
respect to the independent ones.

Automatic differentiation has two basic modes which are
usually referred to as the forward and reverse modes. The for-
ward mode computes derivatives of intermediate variables
with respect to the independent variables during a “forward”
pass through a function. In contrast, the reverse mode propa-
gates derivatives of the final result with respect to intermedi-
ate quantities during a “reverse” pass through the function.
Ignoring sparsity issues, the running time and storage re-
quirements of the forward mode are roughly proportional to
the number of independent variables. The reverse mode is
closely related to adjoint methods and has a lower operations
count for gradient computations, but potentially very large
memory requirements.16 ADIFOR employs a hybrid of the
forward and reverse modes of AD. That is, for each assign-
ment statement, code is generated for computing the partial
derivatives of the result with respect to the variables on the
right–hand side and then the partials are employed in the for-
ward mode to propagate overall derivatives. The resulting de-
crease in complexity compared to an entirely forward mode
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Abstract

Automated multidisciplinary design of aircraft requires the
optimization of complex performance objectives with respect
to a number of design parameters and constraints. The effect
of these independent design variables on the system perfor-
mance criteria can be quantified in terms of sensitivity deriv-
atives for the individual discipline simulation codes. Typical
advanced CFD codes do not provide such derivatives as part
of a flow solution. These derivatives are expensive to obtain
by divided differences from perturbed solutions, and may be
unreliable, particularly for noisy functions. In this paper, au-
tomatic differentiation has been investigated as a means of
extending iterative CFD codes with sensitivity derivatives. In
particular, the ADIFOR automatic differentiator has been ap-
plied to the 3–D, thin–layer Navier–Stokes, multigrid flow
solver called TLNS3D coupled with the WTCO wing grid
generator. Results of a sequence of efforts in which TLNS3D
has been successfully augmented to compute a variety of sen-
sitivities are presented. It is shown that sensitivity derivatives
can be obtained accurately and efficiently using ADIFOR, al-
though significant advances are necessary for the efficiency
of ADIFOR–generated derivative code to become truly com-
petitive with hand–differentiated code.

1. Intr oduction

In the past, design of flight vehicles typically required the in-
teraction of many technical disciplines over an extended pe-
riod of time in a more or less sequential manner. At present,
computer–automated discipline analyses and interactions of-
fer the possibility of significantly shortening the design cycle
time, while simultaneous multidisciplinary design optimiza-
tion (MDO) via formal sensitivity analysis (SA) holds the
possibility of improved designs.

Procedures for MDO of engineering systems have been ad-
dressed by Sobieski and others.1–6Sobieski proposes a uni-
fied system SA guided by system sensitivity derivatives
(SD); the optimizer code or algorithm that uses these SD is
the outermost loop of the entire design process. The objective
and constraint functions are now generally composed of out-
put functions from several disciplines. Each single discipline
analysis code is then to supply not only the output functions
required for the constrained optimization process and other
discipline analysis inputs, but also the derivatives of all of
these output functions with respect to its input variables.
These variables include not only the MDO variables, but also
output functions from other disciplines that implicitly depend
on the MDO variables. Thus, a key technology required for
MDO procedures is the capability to calculate the SD of out-
puts from the various analysis codes with respect to a set of
design variables. Since the envisioned flight vehicle concept
determines which objectives, constraint functions, MDO de-
sign variables, and discipline analysis codes are required to
model the pertinent physical aspects throughout the flight re-
gime (i.e., the particular MDO problem), flexibility and auto-
mation, in addition to computational efficiency, are needed in
SD computations.
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